
NAG C Library Function Document

nag_dspgst (f08tec)

1 Purpose

nag_dspgst (f08tec) reduces a real symmetric-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z or
BAz ¼ �z to the standard form Cy ¼ �y, where A is a real symmetric matrix and B has been factorized by
nag_dpptrf (f07gdc), using packed storage.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dspgst (Nag_OrderType order, Nag_ComputeType comp_type,
Nag_UploType uplo, Integer n, double ap[], const double bp[], NagError *fail)

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az ¼ �Bz, ABz ¼ �z or BAz ¼ �z to the
standard form Cy ¼ �y using packed storage, this function must be preceded by a call to nag_dpptrf
(f07gdc) which computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the argument comp_type, as indicated in the table below.
The table shows how C is computed by the function, and also how the eigenvectors z of the original
problem can be recovered from the eigenvectors of the standard form.

comp_type Problem uplo B C z

1 Az ¼ �Bz Nag_Upper
Nag_Lower

UTU

LLT
U�TAU�1

L�1AL�T
U�1y

L�Ty

2 ABz ¼ �z Nag_Upper
Nag_Lower

UTU

LLT
UAUT

LTAL

U�1yL�Ty

3 BAz ¼ �z Nag_Upper
Nag_Lower

UTU

LLT
UAUT

LTAL

UTyLy

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag_RowMajor or Nag_ColMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08tec

[NP3660/8] f08tec.1

2: comp_type – Nag_ComputeType Input

On entry: indicates how the standard form is computed.

comp_type ¼ Nag_Compute_1

if uplo ¼ Nag_Upper, C ¼ U�TAU�1;

if uplo ¼ Nag_Lower, C ¼ L�1AL�T.

comp_type ¼ Nag_Compute_2 or Nag_Compute_3

if uplo ¼ Nag_Upper, C ¼ UAUT;

if uplo ¼ Nag_Lower, C ¼ LTAL.

Constraint: comp_type ¼ Nag_Compute_1, Nag_Compute_2 or Nag_Compute_3.

3: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been
factorized.

uplo ¼ Nag_Upper

The upper triangular part of A is stored and B ¼ UTU .

uplo ¼ Nag_Lower

The lower triangular part of A is stored and B ¼ LLT.

Constraint: uplo ¼ Nag_Upper or Nag_Lower.

4: n – Integer Input

On entry: n, the order of the matrices A and B.

Constraint: n � 0.

5: ap½dim� – double Input/Output

Note: the dimension, dim, of the array ap must be at least max 1; n� nþ 1ð Þ=2ð Þ.
On entry: the symmetric matrix A, packed by rows or columns. The storage of elements aij depends
on the order and uplo arguments as follows:

if order ¼ Nag_ColMajor and uplo ¼ Nag_Upper,
aij is stored in ap½ j� 1ð Þ � j=2þ i� 1�, for i � j;

if order ¼ Nag_ColMajor and uplo ¼ Nag_Lower,
aij is stored in ap½ 2n� jð Þ � j� 1ð Þ=2þ i� 1�, for i � j;

if order ¼ Nag_RowMajor and uplo ¼ Nag_Upper,
aij is stored in ap½ 2n� ið Þ � i� 1ð Þ=2þ j� 1�, for i � j;

if order ¼ Nag_RowMajor and uplo ¼ Nag_Lower,
aij is stored in ap½ i� 1ð Þ � i=2þ j� 1�, for i � j.

On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle
of C as specified by comp_type and uplo, using the same packed storage format as described
above.

6: bp½dim� – const double Input

Note: the dimension, dim, of the array bp must be at least max 1; n� nþ 1ð Þ=2ð Þ.
On entry: the Cholesky factor of B as specified by uplo and returned by nag_dpptrf (f07gdc).

7: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

f08tec NAG C Library Manual

f08tec.2 [NP3660/8]

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B�1 if
(comp_type ¼ Nag_Compute_1) or B (if comp_type ¼ Nag_Compute_2 or Nag_Compute_3). When
the function is used as a step in the computation of eigenvalues and eigenvectors of the original problem,
there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Further Comments

The total number of floating-point operations is approximately n3.

The complex analogue of this function is nag_zhpgst (f08tsc).

9 Example

To compute all the eigenvalues of Az ¼ �Bz, where

A ¼

0:24 0:39 0:42 �0:16
0:39 �0:11 0:79 0:63
0:42 0:79 �0:25 0:48

�0:16 0:63 0:48 �0:03

0
BB@

1
CCA and B ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34

�0:10 1:09 0:34 1:18

0
BB@

1
CCA,

using packed storage. Here B is symmetric positive-definite and must first be factorized by nag_dpptrf
(f07gdc). The program calls nag_dspgst (f08tec) to reduce the problem to the standard form Cy ¼ �y;
then nag_dsptrd (f08gec) to reduce C to tridiagonal form, and nag_dsterf (f08jfc) to compute the
eigenvalues.

9.1 Program Text

/* nag_dspgst (f08tec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>

int main(void)
{

/* Scalars */
Integer i, j, n, ap_len, bp_len, d_len, e_len, tau_len;
Integer exit_status=0;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08tec

[NP3660/8] f08tec.3

NagError fail;
Nag_UploType uplo;
Nag_OrderType order;

/* Arrays */
char uplo_char[2];
double *ap=0, *bp=0, *d=0, *e=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]
#define B_UPPER(I,J) bp[J*(J-1)/2 + I - 1]
#define B_LOWER(I,J) bp[(2*n-J)*(J-1)/2 + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]
#define B_LOWER(I,J) bp[I*(I-1)/2 + J - 1]
#define B_UPPER(I,J) bp[(2*n-I)*(I-1)/2 + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("nag_dspgst (f08tec) Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
ap_len = n * (n +1)/2;
bp_len = n * (n +1)/2;
d_len = n;
e_len = n-1;
tau_len = n;

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, double)) ||

!(bp = NAG_ALLOC(bp_len, double)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(tau = NAG_ALLOC(tau_len, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf("%lf", &A_UPPER(i,j));
}

Vscanf("%*[^\n] ");
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf("%lf", &B_UPPER(i,j));
}

f08tec NAG C Library Manual

f08tec.4 [NP3660/8]

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= i; ++j)
Vscanf("%lf", &A_LOWER(i,j));

}
Vscanf("%*[^\n] ");
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf("%lf", &B_LOWER(i,j));
}

Vscanf("%*[^\n] ");
}

/* Compute the Cholesky factorization of B */
/* nag_dpptrf (f07gdc).
* Cholesky factorization of real symmetric
* positive-definite matrix, packed storage
*/

nag_dpptrf(order, uplo, n, bp, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_dpptrf (f07gdc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce the problem to standard form C*y = lambda*y, storing */
/* the result in A */
/* nag_dspgst (f08tec).
* Reduction to standard form of real symmetric-definite
* generalized eigenproblem Ax~=~lambda~Bx, ABx~=~lambda~x
* or BAx~=~lambda~x, packed storage, B factorized by
* nag_dpptrf (f07gdc)
*/

nag_dspgst(order, Nag_Compute_1, uplo, n, ap, bp, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_dspgst (f08tec).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
/* nag_dsptrd (f08gec).
* Orthogonal reduction of real symmetric matrix to
* symmetric tridiagonal form, packed storage
*/

nag_dsptrd(order, uplo, n, ap, d, e, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_dsptrd (f08gec).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Calculate the eigenvalues of T (same as C) */
/* nag_dsterf (f08jfc).
* All eigenvalues of real symmetric tridiagonal matrix,
* root-free variant of QL or QR
*/

nag_dsterf(n, d, e, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_dsterf (f08jfc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues */
Vprintf("Eigenvalues\n");
for (i = 1; i <= n; ++i)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08tec

[NP3660/8] f08tec.5

Vprintf("%8.4f%s", d[i-1], i%9==0 || i==n ?"\n":" ");
Vprintf("\n");

END:
if (ap) NAG_FREE(ap);
if (bp) NAG_FREE(bp);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (tau) NAG_FREE(tau);

return exit_status;
}

9.2 Program Data

nag_dspgst (f08tec) Example Program Data
4 :Value of N
’L’ :Value of UPLO
0.24
0.39 -0.11
0.42 0.79 -0.25

-0.16 0.63 0.48 -0.03 :End of matrix A
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.09 0.34 1.18 :End of matrix B

9.3 Program Results

nag_dspgst (f08tec) Example Program Results

Eigenvalues
-2.2254 -0.4548 0.1001 1.1270

f08tec NAG C Library Manual

f08tec.6 (last) [NP3660/8]

	f08tec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	comp_type
	uplo
	n
	ap
	bp
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

