f08 — Least-squares and Eigenvalue Problems (LAPACK) f08tec

NAG C Library Function Document

nag_dspgst (f08tec)

1 Purpose

nag_dspgst (fO8tec) reduces a real symmetric-definite generalized eigenproblem Az = ABz, ABz = Az or
BAz =)z to the standard form Cy = Ay, where A4 is a real symmetric matrix and B has been factorized by
nag_dpptrf (f07gdc), using packed storage.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dspgst (Nag_OrderType order, Nag_ComputeType comp_type,
Nag_UploType uplo, Integer n, double ap[], const double bp[], NagError *fail)

3 Description

To reduce the real symmetric-definite generalized eigenproblem Az = A\Bz, ABz = Az or BAz =)z to the
standard form Cy = Ay using packed storage, this function must be preceded by a call to nag dpptrf
(f07gdc) which computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the argument comp_type, as indicated in the table below.
The table shows how C is computed by the function, and also how the eigenvectors z of the original
problem can be recovered from the eigenvectors of the standard form.

N

comp_type | Problem uplo B C

1 Az = ABz | Nag Upper | 'y | U 40! Ufly
Nag_Lower | ;T L g T LiTy

2 ABz = Xz | Nag _Upper | Uy | vaU™ ULty
Nag_Lower | ;/T | [Tyr

3 BAz = Xz | Nag_Upper | Ty | v4U” UlyLy
Nag_Lower | ;/T | /T 1

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag ColMajor.

[NP3660/8] f08tec.1

fO8tec NAG C Library Manual

2: comp_type — Nag ComputeType Input
On entry: indicates how the standard form is computed.
comp_type = Nag_Compute_1
if uplo = Nag Upper, C = U taut,
if uplo = Nag_Lower, C = Ltar ",
comp_type = Nag_Compute_2 or Nag_Compute_3
if uplo = Nag Upper, C = UAU";
if uplo = Nag_Lower, C = L*AL.
Constraint. comp_type = Nag Compute 1, Nag Compute 2 or Nag Compute 3.

3: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A4 is stored and how B has been
factorized.

uplo = Nag_Upper

The upper triangular part of 4 is stored and B = U U.
uplo = Nag Lower

The lower triangular part of 4 is stored and B = LL".
Constraint. uplo = Nag_Upper or Nag Lower.

4: n — Integer Input
On entry: n, the order of the matrices 4 and B.

Constraint: n > 0.

5: ap[dim] — double Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+ 1)/2).

On entry: the symmetric matrix 4, packed by rows or columns. The storage of elements a;; depends
on the order and uplo arguments as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,

a;; is stored in ap[(j — 1) xj/2+i—1], for i <j;
if order = Nag_ColMajor and uplo = Nag_Lower,

a;; is stored in ap[(2n —j) x (j —1)/2+i—1], for i > j;
if order = Nag RowMajor and uplo = Nag_Upper,
a;; is stored in ap[(2n — i) x (i —1)/2 4, — 1], for i <j;
if order = Nag RowMajor and uplo = Nag_Lower,

a;; is stored in ap[(i — 1) x i/2+j — 1], for i > .

On exit: the upper or lower triangle of 4 is overwritten by the corresponding upper or lower triangle
of C as specified by comp_type and uplo, using the same packed storage format as described
above.

6: bp|dim] — const double Input

Note: the dimension, dim, of the array bp must be at least max(1,n x (n+1)/2).

On entry: the Cholesky factor of B as specified by uplo and returned by nag_dpptrf (f07gdc).

7: fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

f08tec.2 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08tec

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B~ if
(comp_type = Nag_Compute_1) or B (if comp_type = Nag Compute_2 or Nag Compute_3). When
the function is used as a step in the computation of eigenvalues and eigenvectors of the original problem,
there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Further Comments

The total number of floating-point operations is approximately r°.

The complex analogue of this function is nag_zhpgst (f08tsc).

9 Example
To compute all the eigenvalues of 4z = ABz, where
024 039 042 -0.16 4.16 -3.12 0.56 -0.10
4 039 —0.11 0.79 0.63 and B — —-3.12 5.03 -0.83 1.18
- 042 079 —-025 048 a 056 —0.83 076 034 |’
—-0.16 0.63 048 —0.03 —0.10 1.09 0.34 1.18

using packed storage. Here B is symmetric positive-definite and must first be factorized by nag dpptrf
(f07gdc). The program calls nag_dspgst (f08tec) to reduce the problem to the standard form Cy = Ay;
then nag dsptrd (f08gec) to reduce C to tridiagonal form, and nag dsterf (f08jfc) to compute the
eigenvalues.

9.1 Program Text
/* nag_dspgst (f08tec) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>

int main(void)

{
/* Scalars *x/
Integer i, j, n, ap_len, bp_len, d_len, e_len, tau_len;
Integer exit_status=0;

[NP3660/8] f08tec.3

f08tec

NagError fail;
Nag_UploType uplo;
Nag_OrderType order;

/* Arrays */

char uplo_char[2];
double *ap=0, *bp=0, *d=0, *e=0,
#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 +
#define A_LOWER(I,J) ap[(2*n J)*(J-
#define B_UPPER(I,J) bpl[J*(J-1)/2 +
#define B_LOWER(I,J) bpl[(2*n-J)*(J-
order = Nag_ColMajor;
#else
#define A_LOWER(I,J) apl[I*(I-1)/2 +
#define A_UPPER(I,J) apl[(2*n-I)*(I-
#define B_LOWER(I,J) bp[I*(I-1)/2 +
#define B_UPPER(I,J) bpl[(2*n-I)*(I-
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
Vprintf ("nag_dspgst (£08tec)

/* Skip heading in data file */

Vscanf ("%x* [\n ") ;

Vscanf ("$1d%*[*\n] ", &n);
ap_len = n * (n +1)/2;
bp_len = n * (n +1)/2;
d_len = n;

e_len = n-1;

tau_len = n;

/* Allocate memory */
if (!(ap =

!
!
!
!

tau =

NAG_ALLOC (ap_len,
(bp = NAG_ALLOC (bp_len,
(d = NAG_ALLOC (d_1len,
(e = NAG_ALLOC(e_len,
(NAG_ALLOC (tau_len,

double))
double))
doubl

double))
double))
|
|
e

Vprintf ("Allocation failure\n");

exit_status =
goto END;

_l/.

}

/* Read A and B from data file =*/
, uplo_char);

Vscanf (" ' %1s
if (*(unsigned char
uplo = Nag_Lower;
else if (*(unsigned
uplo = Nag_Upper;
else

{

l%*[

“\n]

*)uplo_char ==

char *)uplo_char

ILI)

Vprintf ("Unrecognised character for

exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)
{
for (j = i; j <= n; ++3j)
Vscanf ("$1f", &A_UPPER(1
b
Vscanf ("sx["\n] ");
for (1 = 1; 1 <= n; ++1)
{
for (j = i; j <= n; ++3j)
Vscanf ("$1f", &B_UPPER(i
b
fO08tec.4

Ij));

Ij));

I - 1]
I - 1]
J - 1]
J - 1]

Example Program Results\n\n")

|
|
)))

Nag_UploType type\n")

NAG C Library Manual

’

[NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Vscanf ("sx["\n] ");

}
else
{
for (i = 1; i <= n; ++i)
{
for (3 = 1; j <= i; ++3)
Vscanf ("$1f", &A_LOWER(i,3));
¥
Vscanf ("$x[*\n] ");
for (i = 1; i <= n; ++i)
{
for (3 = 1; j <= 1i; ++3)
Vscanf ("$1f", &B_LOWER(i,j));
¥
Vscanf ("sx[*\n] ");
}

/* Compute the Cholesky factorization of B */
/* nag_dpptrf (£07gdc).

* Cholesky factorization of real symmetric

* positive-definite matrix, packed storage

*/
nag_dpptrf(order, uplo, n, bp, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dpptrf (£07gdc) .\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Reduce the problem to standard form C*y = lambda*y, storing =*/
/* the result in A */
/* nag_dspgst (f£08tec).
* Reduction to standard form of real symmetric-definite
* generalized eigenproblem Ax ="lambda Bx, ABx ="lambda x
* or BAx"="lambda~x, packed storage, B factorized by
* nag_dpptrf (£07gdc)
*/
nag_dspgst(order, Nag_Compute_1, uplo, n, ap, bp, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from nag_dspgst (f08tec).\n%s\n", fail.message) ;
exit_status = 1;
goto END;

}

/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
/* nag_dsptrd (f£08gec).
* Orthogonal reduction of real symmetric matrix to
* symmetric tridiagonal form, packed storage

*/
nag_dsptrd(order, uplo, n, ap, d, e, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dsptrd (f08gec).\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}

/* Calculate the eigenvalues of T (same as C) */
/* nag_dsterf (£08jfc).
* All eigenvalues of real symmetric tridiagonal matrix,
* root-free variant of QL or QR
*/
nag_dsterf(n, 4, e, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dsterf (£08jfc).\n%s\n", fail.message);
exit_status = 1;
goto END;
¥
/* Print eigenvalues */
Vprintf ("Eigenvalues\n") ;
for (i = 1; 1 <= n; ++1)

[NP3660/8]

f08tec

fO08tec.5

fO8tec NAG C Library Manual

Vprintf ("%8.4f%s", d[i-1], i%9==0 || i==n 2"\n":" ");
Vprintf ("\n") ;
END:
if (ap) NAG_FREE (ap);
if (bp) NAG_FREE (bp);
if (d) NAG_FREE (4d);
if (e) NAG_FREE (e);
if (tau) NAG_FREE(tau) ;

return exit_status;

9.2 Program Data

nag_dspgst (f08tec) Example Program Data

4 :Value of N
'L’ :Value of UPLO
0.24

0.39 -0.11

0.42 0.79 =-0.25

-0.16 0.63 0.48 -0.03 :End of matrix A
4.16

-3.12 5.03

0.56 -0.83 0.76

-0.10 1.09 0.34 1.18 :End of matrix B

9.3 Program Results

nag_dspgst (f08tec) Example Program Results

Eigenvalues
-2.2254 -0.4548 0.1001 1.1270

fO8tec.6 (last) [NP3660/8]

	f08tec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	comp_type
	uplo
	n
	ap
	bp
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

